68 research outputs found

    Granule Cell Dispersion in Human Temporal Lobe Epilepsy: Proteomics investigation of neurodevelopmental migratory pathways

    Get PDF
    Granule cell dispersion (GCD) is a common pathological feature observed in the hippocampus of patients with Mesial Temporal Lobe Epilepsy (MTLE). Pathomechanisms underlying GCD remain to be elucidated, but one hypothesis proposes aberrant reactivation of neurodevelopmental migratory pathways, possibly triggered by febrile seizures. This study aims to compare the proteomes of basal and dispersed granule cells in the hippocampus of eight MTLE patients with GCD to identify proteins that may mediate GCD in MTLE. Quantitative proteomics identified 1882 proteins, of which 29% were found in basal granule cells only, 17% in dispersed only and 54% in both samples. Bioinformatics analyses revealed upregulated proteins in dispersed samples were involved in developmental cellular migratory processes, including cytoskeletal remodelling, axon guidance and signalling by Ras homologous (Rho) family of GTPases (P<0.01). The expression of two Rho GTPases, RhoA and Rac1, was subsequently explored in immunohistochemical and in situ hybridisation studies involving eighteen MTLE cases with or without GCD, and three normal post mortem cases. In cases with GCD, most dispersed granule cells in the outer-granular and molecular layers have an elongated soma and bipolar processes, with intense RhoA immunolabelling at opposite poles of the cell soma, while most granule cells in the basal granule cell layer were devoid of RhoA. A higher density and percentage of cells expressing RhoA was observed in cases with GCD than without GCD (P<0.004). In GCD cases, the density and percentage of cells expressing RhoA was significantly higher in the inner molecular layer than granule cell layer (P<0.026), supporting proteomic findings. In situ hybridisation studies using probes against RHOA and RAC1 mRNAs revealed fine peri- and nuclear puncta in granule cells of all cases. The density of cells expressing RHOA mRNAs were significantly higher in the inner molecular layer of cases with GCD than without GCD(P=0.05). In summary, our study has found limited evidence for ongoing adult neurogenesis in the hippocampus of patients with MTLE, but evidence of differential dysmaturation between dispersed and basal granule cells has been demonstrated, and elevated expression of Rho GTPases in dispersed granule cells may contribute to the pathomechanisms underpinning GCD in MTLE

    A spatiotemporal study of gliosis in relation to depth electrode tracks in drug-resistant epilepsy

    Get PDF
    Key questions remain regarding the processes governing gliogenesis following central nervous system injury that are critical to understanding both beneficial brain repair mechanisms and any long-term detrimental effects, including increased risk of seizures. We have used cortical injury produced by intracranial electrodes (ICEs) to study the time-course and localization of gliosis and gliogenesis in surgically resected human brain tissue. Seventeen cases with ICE injuries of 4–301 days age were selected. Double-labelled immunolabelling using a proliferative cell marker (MCM2), markers of fate-specific transcriptional factors (PAX6, SOX2), a microglial marker (IBA1) and glial markers (nestin, GFAP) was quantified in three regions: zone 1 (immediate vicinity: 0–350 μm), zone 2 (350–700 μm) and zone 3 (remote ≥2000 μm) in relation to the ICE injury site. Microglial/macrophage cell densities peaked at 28–30 days post-injury (dpi) with a significant decline in proliferating microglia with dpi in all zones. Nestin-expressing cells (NECs) were concentrated in zones 1 and 2, showed the highest regenerative capacity (MCM2 and PAX6 co-expression) and were intimately associated with capillaries within the organizing injury cavity. There was a significant decline in nestin/MCM2 co-expressing cells with dpi in zones 1 and 2. Nestin-positive fibres remained in the chronic scar, and NECs with neuronal morphology were noted in older injuries. GFAP-expressing glia were more evenly distributed between zones, with no significant decline in density or proliferative capacity with dpi. Colocalization between nestin and GFAP in zone 1 glial cells decreased with increasing dpi. In conclusion, NECs at acute injury sites are a proliferative, transient cell population with capacity for maturation into astrocytes with possible neuronal differentiation observed in older injuries

    Spatiotemporal dynamics of PDGFRβ expression in pericytes and glial scar formation in penetrating brain injuries in adults

    Get PDF
    Aims: Understanding the spatiotemporal dynamics of reactive cell types following brain injury is important for future therapeutic interventions. We have previously used penetrating cortical injuries following intracranial recordings as a brain repair model to study scar-forming nestin-expressing cells. We now explore the relationship between nestin-expressing cells, PDGFRβ+ pericytes and Olig2+ glia, including their proliferation and functional maturation. Methods: In 32 cases, ranging from 3 to 461 days post injury (dpi), immunohistochemistry for PDGFRβ, nestin, GFAP, Olig2, MCM2, Aquaporin 4 (Aq4), Glutamine Synthetase (GS), and Connexin 43 (Cx43) were quantified for cell densities, labelling index (LI) and cellular co-expression at the injury site compared to control regions. Results: PDGFRβ labelling highlighted both pericytes and multipolar parenchymal cells. PDGFRβ LI and PDGFRβ+/MCM2+ cells significantly increased in injury zones at 10-13 dpi with migration of pericytes away from vessels with increased co-localisation of PDGRFβ with nestin compared to control regions (p < 0.005). Olig2+/MCM2+ cell populations peaked at 13 dpi with significantly higher cell densities at injury sites than in control regions (p < 0.01) and decreasing with dpi (p < 0.05). Cx43 LI was reduced in acute injuries but increased with dpi (p < 0.05) showing significant cellular co-localisation with nestin and GFAP (p<0.005 and p<0.0001) but not PDGFRβ. Conclusions: These findings indicate that PDGFRβ+ and Olig2+ cells contribute to the proliferative fraction following penetrating brain injuries, with evidence of pericyte migration. Dynamic changes in Cx43 in glial cell types with dpi suggests functional alterations during temporal stages of brain repair

    Neuropathology of 16p13.11 deletion in epilepsy

    Get PDF
    16p13.11 genomic copy number variants are implicated in several neuropsychiatric disorders, such as schizophrenia, autism, mental retardation, ADHD and epilepsy. The mechanisms leading to the diverse clinical manifestations of deletions and duplications at this locus are unknown. Most studies favour NDE1 as the leading disease-causing candidate gene at 16p13.11. In epilepsy at least, the deletion does not appear to unmask recessive-acting mutations in NDE1, with haploinsufficiency and genetic modifiers being prime candidate disease mechanisms. NDE1 encodes a protein critical to cell positioning during cortical development. As a first step, it is important to determine whether 16p13.11 copy number change translates to detectable brain structural alteration. We undertook detailed neuropathology on surgically resected brain tissue of two patients with intractable mesial temporal lobe epilepsy (MTLE), who had the same heterozygous NDE1-containing 800 kb 16p13.11 deletion, using routine histological stains and immunohistochemical markers against a range of layer-specific, white matter, neural precursor and migratory cell proteins, and NDE1 itself. Surgical temporal lobectomy samples from a MTLE case known not to have a deletion in NDE1 and three non-epilepsy cases were included as disease controls. We found that apart from a 3 mm hamartia in the temporal cortex of one MTLE case with NDE1 deletion and known hippocampal sclerosis in the other case, cortical lamination and cytoarchitecture were normal, with no differences between cases with deletion and disease controls. How 16p13.11 copy changes lead to a variety of brain diseases remains unclear, but at least in epilepsy, it would not seem to be through structural abnormality or dyslamination as judged by microscopy or immunohistochemistry. The need to integrate additional data with genetic findings to determine their significance will become more pressing as genetic technologies generate increasingly rich datasets. Detailed examination of brain tissue, where available, will be an important part of this process in neurogenetic disease specifically

    Variability of sclerosis along the longitudinal hippocampal axis in epilepsy: A post mortem study

    Get PDF
    Detailed neuropathological studies of the extent of hippocampal sclerosis (HS) in epilepsy along the longitudinal axis of the hippocampus are lacking. Neuroimaging studies of patients with temporal lobe epilepsy support that sclerosis is not always localised. The extent of HS is of relevance to surgical planning and poor outcomes may relate to residual HS in the posterior remnant. In 10 post mortems from patients with long histories of drug refractory epilepsy and 3 controls we systematically sampled the left and right hippocampus at seven coronal anatomical levels along the body to the tail. We quantified neuronal densities in CA1 and CA4 subfields at each level using Cresyl Violet (CV), calretinin (CR), calbindin (CB) and Neuropeptide Y (NPY) immunohistochemistry. In the dentate gyrus we graded the extent of granule cell dispersion, patterns of CB expression, and synaptic reorganisation with CR and NPY at each level. We identified four patterns of HS based on patterns of pyramidal and interneuronal loss and dentate gyrus reorganisation between sides and levels as follows: (1) symmetrical HS with anterior–posterior (AP) gradient, (2) symmetrical HS without AP gradient, (3) asymmetrical HS with AP gradient and (4) asymmetrical cases without AP gradient. We confirmed in this series that HS can extend into the tail. The patterns of sclerosis (classical versus atypical or none) were consistent between all levels in less than a third of cases. In conclusion, this series highlights the variability of HS along the longitudinal axis. Further studies are required to identify factors that lead to focal versus diffuse HS

    Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies

    Get PDF
    Introduction Activation of the mTOR pathway has been linked to the cytopathology and epileptogenicity of malformations, specifically Focal Cortical Dysplasia (FCD) and Tuberous Sclerosis (TSC). Experimental and clinical trials have shown than mTOR inhibitors have anti-epileptogenic effects in TS. Dysmorphic neurones and balloon cells are hallmarks of FCDIIb and TSC, but similar cells are also occasionally observed in other acquired epileptogenic pathologies, including hippocampal sclerosis (HS) and Rasmussen’s encephalitis (RE). Our aim was to explore mTOR pathway activation in a range of epilepsy-associated pathologies and in lesion-negative cases. Results 50 epilepsy surgical pathologies were selected including HS ILAE type 1 with (5) and without dysmorphic neurones (4), FCDIIa (1), FCDIIb (5), FCDIIIa (5), FCDIIIb (3), FCDIIId (3), RE (5) and cortex adjacent to cavernoma (1). We also included pathology-negative epilepsy cases; temporal cortex (7), frontal cortex (2), paired frontal cortical samples with different ictal activity according to intracranial EEG recordings (4), cortex with acute injuries from electrode tracks (5) and additionally non-epilepsy surgical controls (3). Immunohistochemistry for phospho-S6 (pS6) ser240/244 and ser235/236 and double-labelling for Iba1, neurofilament, GFAP, GFAPdelta, doublecortin, and nestin were performed. Predominant neuronal labelling was observed with pS6 ser240/244 and glial labelling with pS6 ser235/236 in all pathology types but with evidence for co-expression in a proportion of cells in all pathologies. Intense labelling of dysmorphic neurones and balloon cells was observed in FCDIIb, but dysmorphic neurones were also labelled in RE and HS. There was no difference in pS6 labelling in paired samples according to ictal activity. Double-labelling immunofluorescent studies further demonstrated the co-localisation of pS6 with nestin, doublecortin, GFAPdelta in populations of small, immature neuroglial cells in a range of epilepsy pathologies. Conclusions Although mTOR activation has been more studied in the FCDIIb and TSC, our observations suggest this pathway is activated in a variety of epilepsy-associated pathologies, and in varied cell types including dysmorphic neurones, microglia and immature cell types. There was no definite evidence from our studies to suggest that pS6 expression is directly related to disease activity

    Doublecortin-expressing cell types in temporal lobe epilepsy

    Get PDF
    Doublecortin (DCX) is widely regarded as a marker of immature and migrating neurons during development. While DCX expression persists in adults, particularly in the temporal lobe and neurogenic regions, it is unknown how seizures influence its expression. The aim of the present study was to explore the distribution and characteristics of DCX-expressing cells in surgical and postmortem samples from 40 adult and paediatric patients, with epilepsy and with or without hippocampal sclerosis (HS), compared to post mortem controls. The hippocampus (pes and body), parahippocampal gyrus, amygdala, temporal pole and temporal cortex were examined with DCX immunohistochemistry using four commercially-available DCX antibodies, labelled cells were quantified in different regions of interest as well as their co-expression with cell type specific markers (CD68, Iba1, GFAP, GFAP∂, nestin, SOX2, CD34, OLIG2, PDGFRβ, NeuN) and cell cycle marker (MCM2). Histological findings were compared with clinical data, as well as gene expression data obtained from the temporal cortex of 83 temporal lobe epilepsy cases with HS. DCX immunohistochemistry identified immature (Nestin-/NeuN-) neurons in layer II of the temporal neocortex in patients with and without epilepsy. Their number declined significantly with age but was not associated with the presence of hippocampal sclerosis, seizure semiology or memory dysfunction. DCX+ cells were prominent in the paralaminar nuclei and periamygdalar cortex and these declined with age but were not significantly associated with epilepsy history. DCX expressing cells with ramified processes were prominent in all regions, particularly in the hippocampal subgranular zone, where significantly increased numbers were observed in epilepsy samples compared to controls. DCX ramified cells co-expressed Iba1, CD68 and PDGFRβ, and less frequently MCM2, OLIG2 and SOX2, but no co-localization was observed with CD34, nestin or GFAP/GFAP ∂. Gene expression data from neocortical samples in patients with TLE and HS supported ongoing DCX expression in adults. We conclude that DCX identifies a range of morphological cell types in temporal lobe epilepsy, including immature populations, glial and microglial cell types. Their clinical relevance and biological function requires further study but we show some evidence for alteration with age and in epilepsy

    Climate change: attitudes and concerns of, and learnings from, people with neurological conditions, carers, and health care professionals

    Get PDF
    Objective Concern about climate change among the general public is acknowledged by surveys. The health care sector must play its part in reducing greenhouse gas emissions and adapting to a changing climate, which will require the support of its stakeholders including those with epilepsy, who may be especially vulnerable. It is important to understand this community's attitudes and concerns about climate change and societal responses. Methods A survey was made available to more than 100 000 people among a section of the neurological community (patients, carers, and clinicians), focused on epilepsy. We applied quantitative analysis of Likert scale responses supported by qualitative analyses of free-text questions with crossover analyses to identify consonance and dissonance between the two approaches. Results A small proportion of potential respondents completed the survey; of 126 respondents, 52 had epilepsy and 56 explicitly declared no illness. The survey indicated concern about the impact of climate change on health within this neurological community focused on epilepsy. More than half of respondents considered climate change to have been bad for their health, rising to 68% in a subgroup with a neurological condition; over 80% expected climate change to harm their health in future. Most (>75%) believed that action to reduce greenhouse gas emissions will lead to improved health and well-being. The crossover analysis identified cost and accessibility as significant barriers. Significance The high level of concern about climate change impacts and positive attitudes toward policies to reduce greenhouse gas emissions provide support for climate action from the epilepsy community. However, if policies are implemented without considering the needs of patients, they risk being exclusionary, worsening inequalities, and further threatening neurological health and well-being

    High-throughput, automated quantification of white matter neurons in mild malformation of cortical development in epilepsy

    Get PDF
    Introduction In epilepsy, the diagnosis of mild Malformation of Cortical Development type II (mMCD II) predominantly relies on the histopathological assessment of heterotopic neurons in the white matter. The exact diagnostic criteria for mMCD II are still ill-defined, mainly because findings from previous studies were contradictory due to small sample size, and the use of different stains and quantitative systems. Advance in technology leading to the development of whole slide imaging with high-throughput, automated quantitative analysis (WSA) may overcome these differences, and may provide objective, rapid, and reliable quantitation of white matter neurons in epilepsy. This study quantified the density of NeuN immunopositive neurons in the white matter of up to 142 epilepsy and control cases using WSA. Quantitative data from WSA was compared to two other systems, semi-automated quantitation, and the widely accepted method of stereology, to assess the reliability and quality of results from WSA. Results All quantitative systems showed a higher density of white matter neurons in epilepsy cases compared to controls (P = 0.002). We found that, in particular, WSA with user-defined region of interest (manual) was superior in terms of larger sampled size, ease of use, time consumption, and accuracy in region selection and cell recognition compared to other methods. Using results from WSA manual, we proposed a threshold value for the classification of mMCD II, where 78% of patients now classified with mMCD II were seizure-free at the second post-operatively follow up. Conclusion This study confirms the potential role of WSA in future quantitative diagnostic histology, especially for the histopathological diagnosis of mMCD

    PAX6, brain structure and function in human adults: Advanced MRI in aniridia

    Get PDF
    Objective PAX6 is a pleiotropic transcription factor essential for the development of several tissues including the eyes, central nervous system, and some endocrine glands. Recently it has also been shown to be important for the maintenance and functioning of corneal and pancreatic tissues in adults. We hypothesized that PAX6 is important for the maintenance of brain integrity in humans, and that adult heterozygotes may have abnormalities of cortical patterning analogous to those found in mouse models. Methods We used advanced magnetic resonance imaging techniques, including surface-based morphometry and region-of-interest analysis in adult humans heterozygously mutated for PAX6 mutations (n = 19 subjects and n = 21 controls). Using immunohistochemistry, we also studied PAX6 expression in the adult brain tissue of healthy subjects (n = 4) and patients with epilepsy (n = 42), some of whom had focal injuries due to intracranial electrode track placement (n = 17). Results There were significant reductions in frontoparietal cortical area after correcting for age and intracranial volume. A greater decline in thickness of the frontoparietal cortex with age, in subjects with PAX6 mutations compared to controls, correlated with age-corrected, accelerated decline in working memory. These results also demonstrate genotypic effects: those subjects with the most severe genotypes have the most widespread differences compared with controls. We also demonstrated significant increases in PAX6-expressing cells in response to acute injury in the adult human brain. Interpretation These findings suggest a role for PAX6 in the maintenance and consequent functioning of the adult brain, homologous to that found in other tissues. This has significant implications for the understanding and treatment of neurodegenerative diseases
    corecore